
at a frequency of 1-2 Hz and amplitude of 1-2% did not induce any appreciable intensifica- 
tion of heat transfer in the investigated regimes associated with the ascending flow of su- 
percritical helium in a vertical tube. 
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THE FINAL STAGE OF DEGENERATION IN THE TURBULENT PATTERN 

FOR A PASSIVE TRACE COMPONENT IN A WAKE 

N. N. Luchko and I. I. Kovalev UDC 532.517.4 

A multiparameter differential model has been used to derive asymptotic formulas 
for the behavior of a passive component in the final stage of degeneration in a 
turbulent wake. 

Recently, considerable experience has been accumulated in calculating the characteristics 
of turbulent shear flows on the basis of multiparameter uiuj-~ u differential models [I]. 
The advances in this area have provided a stimulus to constructing differential models for 
the transport of a passive component, which one can take as being the temperature if there is 
a slight temperature rise and buoyancy effects are negligible. 

The passive scalar is a transportable substance , so that in most free flows the turbulent 
Peclet number PI varies along with R A from PI ~ 1 in the near region to P% in the far one. A 
study has been made [2] of the features in the final stage of degeneration in the pattern for 
a passive component by applying a Fourier transformation to the Navier-Stokes equations and 
then expanding the Fourier transforms as series, taking the first few terms in the expansion. 
The multiparameter differential model has been proposed [3, 4] to describe the scalar field. 

A distinctive feature is that it contains functions of the turbulent Reynolds and Peclet 
numbers instead of the traditional empirical constants and incorporates the evolution of the 
scalar field as a function of R% and PI- In the zones of strong turbulence (R% ~ i, P% ~ i) 
and weak turbulence (RI < i, PI < i), one can replace the empirical functions by constants, 
which determine the damping of the model characteristics of the wake in the asymptotic cases 
R~, PI ~ ~ and R~, PI § 0. 

The following is the closed system of equations in a Cartesian coordinate system [4]: 

DT O~T Ouk"--t 
D'~ Ox~ Oxl~ 

Du~--t 0 [ q~ (,~.,,, OZht - -  Oui-'-7 ---z, Ou~uk "~. v + • 
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D'~ = ~ ~ ( u h u ' ~  + 2~zt . + •  ] Oxh 2et, 

De~ a u~u~ t ~ ~ a~ t ] __ b~ t q~ 
Dr, -- Oxk • + ~ t  e - -~]  Ox~, ] Oxi 

SuE t . E_t . u~Uje t OU~ Ft 1 q~ Ft ~ t 2 -7 b~ q2 Oxi 

Here aut, ~tt, ~et, but are empirical constants, while Cut, bet , beu, Ftl, Ft2 are empirical 
functions of the turbulent Reynolds and Peclet numbers and also in general of the parameter 

R = gtqi/Eu ti. 

We introduce the following dimensionless quantities by taking the characteristic quan- 
tities as the diameter of a body of rotation or the transverse dimension of a planar body d, 
the speed of the incident U=, and the temperature T= of this: 

X - -  
X1 
d ; r = - -  

P ~  ~ 

x2 u#i  . D ~ = e ~  d__d_. R= U=d . 
= ; E =  2 '  [ 1 3  ' - -  ' a 

U ~  ~ ~3 

U~d T - - T ~  -~ 
; T - -  - - ' 0 - -  " 

• T .  ' T .  ' 

d u2t 
D t = e t  U=TZ = ; R t -  rU~T~ 

The inertial forces become negligible by comparison with the viscous ones for R~, P% + 0 
so the initial equation system and the conservation condition for the excess heat content I t 
take the form 

OT 1 0 OT ~ t' r"T (x, r) dr = const,  - - - -  r ~ ; It ( 1 )  
Ox P~r ~ Or , b 

aRt _ 1 a (r ~ OR~ 
Ox P~r ~ Or O/-J  

2 OR~ 

rP= Or 
E aT c Dt R 
3r Or ,~t --~-- ~, ( 2 )  

O0 _ 1 0 ( r  n O0 ] 
Ox -- -P=r '~ Or \ --Or-r ] - 2 D r '  ( 3 )  

ODt 1 0 {r n OD~ \ DuDt D~ ( 4 )  
d ~  - -  p=----~ O ~  ~, ~ ) - -  F t l E F t2 - - i f - -  

T h e  v a l u e  n = 0 c o r r e s p o n d s  t o  p l a n a r  f l o w  a n d  n = 1 t o  a x i a l l y  s y m m e t r i c a l  f l o w ,  

We examine the dependence of solution to (1)-(4) on Cut, Ftl , Ft2 on the assumption of a 
self-modeling flow in the final stage of degeneration, where we represent the parameters in 
(1)-(4) as 

= ~ ~ ~,nDT F T(x, 0) To (x + xo)nTft (% Dr(x, ~]) D~o(x+,~o~ ,Dr(% 

Rt (x, ~) = R,o (x + xo)"RrfRt (rl), E (x, ~l) = Eo (x + Xo)"efe Of), 
r 

o (x, ~) = % (x + xo)n~ ( %  n - 
V x  + Xo 

The exponents in the degeneration laws and the functions of the variable q satisfy ordinary 
differential equations : 

nT,[t  ~I , 1 - - 7  f' (~I;}" (5) ~InP~ 

nRT. [  m "q ['m -- 1 (~l~/m) ' + 2 f ~  ToE. D,o fDt[m 
2 n~P| ,1P~ 3nR,o f S  -- c~, oo f ~ '  (6) 
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nO. fo - -  + [o _ B"P-1 0tn/0) ' " 2 D,Oo, [Dt' (7) 

nDT.fm t n lot : 1 (~l~['Dt) ' - -  F,1 DuoD,o [D,, lot D~o lot 
2 ~]np~ Eo [ e  - -  Ft2 - -  - -  ' ( 8 )  Oo [o 

together with the condition for conservation of the excess heat content 
oa 

I, j' B"[t (~) d~l =- const ( 9 ) 
0 

and the system of inequalities 

nT>nRT + I; nO>nT + nRT + I; nDT>nRT + nT. (i0) 

Each of the functions in (5)-(8) should satisfy the following boundary conditions: 

[ ' ( 0 ) = 0 ;  lim[(~)= limf'(~l)=O. (11) 

It follows from [5] that the turbulent kinetic energy and the dissipation rate satisfy 
the following relations in the final stage in a wake (apart from a planar wake with nonzero 
excess momentum) : 

n+6 
E(x, r )=  Eo(x + Xo) 2 O(R| Du(x, r) = - ~ 5  E(x, r) , (12)  

4 x + x o  
where 

/ 
(I) (z) = exp ( 

% 

We t a k e  (7)  and (8)  t o g e t h e r  t o  g e t  

[n = 1--1,25F,1 0o [o; n 0 -  
F~2 - -  2 Dm 

Z /.2 I" 
4 x + x o  

n + 1 2 - -  2,5F,~ 
2 Fm - -  2 

= nDT + 1, (13)  

i.e., the damping exponent for the temperature fluctuations is dependent on Ftx and Ft2. 
It follows from [4] that lim Ftl = 0, |im Ff~ = 10/3, and in that case n0 = - (n + 4)/2, 

R~,P~O R~,P~O 

which agrees with the results of [2]. Equation (7) is readily transformed to 2(Nnf'8) ' + 

P~(Nn+ifo)' = 0 and has the solution f0 = r so in the final stage O(x, r) = 00(x + x0)- 

(n+4)/2#(p~), Dt(x ' r) = 3/4 O(x, r)/(x+x0), where the microscopic scale A t increases in ac- 

cordance with the law /x + x 0 and remains constant transverse to the flow, while the macro- 

n+2 
scopic scale L t decreases as (x + x0)- 4. The characteristic ratio R of the time scales 
remains constant, with R = 0.6. 

With I t ~ 0, it follows unambiguously from (5) that nT = - (n + 1)/2, so T(x, r) = T o 

n+l 
(x + x0)---ff- ~(P~); if there is no excess heat content, the integral condition does not 

enable us to determine nT. The solution to (5) can [6] be represented as ft = r 

- - 7 '  2 ' 4 02 , where  1Fl(a, b, x ) =  = (b)~ m! i s  a d e g e n e r a t e  h y p e r g e o -  

m e t r i c  f u n c t i o n .  With  nT = - (n  + 1 ) / 2  - k ,  where  k i s  any  p o s i t i v e  i n t e g e r ,  f t  s a t i s f i e s  

I t = 0 and decreases exponentially for N + ~. Each k corresponds to a particular solution 
2h+.+I 

Tk=T~(x+Xo)__ 2 .  (p.)lF1 ( _ k  ' ------2--- ' n + l  . P| ) _ _  __~_~2 . The general solution to (5) is written 

as T =~T~ , and the temperature defect in the final stage will be described by the 

i=l 
first term in the sum, which decreases more slowly than the others. Consequently, the asym- 
ptotic representation for T(x, r) is 

1270 



n+3 
T(X, r ) = T o ( x + X o )  2 ~ ( P ~ ) / 1  P= ~]~ - ) .  

\ 2 n + l  / 
If there is no excess heat content, the relative contribution from the generation to the 

balance equation for the second moments diminishes downstream in the strong-turbulence region, 
so we omit the term E/3r 3T/Sr in (2) for I t = 0. Then (i0) is supplemented with nRT > nE + 
nT, which implies 

2n+9 <nRT < n§ (14) 
2 2 

We multiply (6) by q n+2 and integrate with respect to q to get 

nR + n + 3  + 3cu~  q /R,(~])d~]=O. (15)  
2 4 

As the integral relation .I ~}'~+2[m(~])d~] ~ 0 is not a conservation law, it is possible for 
0 

(15) to be obeyed only if nRT = - (n + 3)/2 - 3/4 Cut, so Cut can take values in the range 
4/3 < Cut < 2(n + 6)/3~ As Cut should be independent of the flow geometry, we have finally 
that 

4 < c ~ t < 4 ;  nRT n + 3  3 = c~ .  (16)  
3 2 4 

From (16) and (2) we see for the case I t ~ O that the assumption that E/3r 8T/Sr is small is 
correct only for Cut < 2(n + 4)/'3, so if the excess heat content is different from zero 

__ n + 3  3 i f  4 c , t < - - 2 ( n + 4 )  
nRT = - 2 - -  ---4-- c~t, - -~  < 3 ' 

2n + 7 ,if 2(n + 4) 
3 ' 3 ~'~ cu~< 4" 

For example, in [4] it was assumed that Cut = 2. Then the asymptotic representation for 
Rt(x, r) is as follows, no matter what the excess heat content: 

n+6 

Rt (x, r) = R~0 (x + x0) ~ �9 (P~) 

These asymptotic representations may be useful in simulating wake turbulence throughout 
the range in the turbulent Reynolds and Peclet numbers. The numerical solution attains these 
asymptotes as Rl and Pk decrease, and insofar as this occurs, it indicates that the method 
of numerical integration is correct and that there are no errors in the program. 

NOTATION 

u i and t, velocity and temperature fluctuations; eu = v(Sui/SXk )2, turbulent kinetic 
energy dissipation rate; st = <(St/3x~) 2, spreading rate for scalar pulsations; %u = / ~ u ,  
~t = /6~t Yet, microscales for vector and scalar fields; q= = ~ ,  doubled velocity-fluctua- 
tion kinetic energy; L u = 5q3/Su, L t = 6qt-~/st, macroscales for vector and scalar fields; 
R% = qlu/V, P~ = q%t/<, turbulent Reynolds and Peclet numbers. 
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